
,.,. J. SlIM~ Val 16, " ....1116
C ....... Pnss LIlL.... I'riIled ill Glalllrillia

TRANSVERSE VIBRATION OF ARECTANGULAR
PLATE WITH ANBC~ CIRCULAR

INNBR BOUNDARY

KOSUKE NAGAYA

Deplrtmeat of Mecbaaic:aI EaPeaiaa. FIcuIty of Blinn... GuDma Uaivenity, Kiryu, JIPID

(RICIi_ .. April 1979; ill rniSId!ann 18 JtI1UIIIf1 19110)

Allllnd-in this paper • ..eIhod for soIviaa vibralion problems of • recta'" p1ate with au ec:ceatric
circular iaMr boundary is presented. ne eilenvalue problem of the p1ate is solved by the _ of the euct
soluIion of the .... of lIIllCion which __ the inner boundary coeditioas. ne boundary c:oadilioas
.... the OIlIer • are IIIisfied by means of the Fourier expansioa medlod. N...ncaJ caIcu1IIiou are
CIIried our for ¥IriouI ClO8Ibinatioas of OIlIer and inner boundary c:oadiIioas. aad the DOlIIlIiIMasionaI
IIIlIn1 frequeacies are PVllII for a IIIIIDbcr of cues.

I. INTRODUCTION
A RdaftIUIar plate having an inner circular boundary is widely used in many branches of
engineering. The dynamic behavior of this type of plate therefore needs to be understood and
many investiptions on the vibration of square[l, 2], rectanguIar[3,4] and irreauJar shaped[S]
plates with boles have been reported. However the plate with the other edaes and that with
ecc:eatric buaer edaes have not been tborouablY discussed a1thouIb the solution in Ref. [4]
imposes no symmetry restrictions. This paper deals with eiaenvalue problems of a rectangular
plate with an eccentric circular inner edge for various combinations of outer and inner
boundary conditions. For this problem, general approximate methods such as the finite element,
finite difference and point matching methods[4] are usually applied. These methods have many
advantaaes for solving vibration problems of a plate with irrqular bouadaries. However in such
methods a large size diaital computer is required and, in general, there are many computational
difficulties to obtain good results in cases of hiaher mode vibrations[6, 7]. Therefore it seems to
be important to give a more straishtforward method from which the results with reasonable
accuracy being obtained easily by using a minicomputer. Recently the author gave a straisht­
forward method to deal with vibration and dynamic response problems of membranes[8-II]
and plates[II, 12] with arbitrary shape. In those studies the boundary of the plate was restricted
to one made up of curves. In this paper this method is expanded into vibration problems of the
rectangular plate with an eccentric circular inside edge. In the analysis the exact solution of
equation of motion which satisfies the inner boundary conditions is utilized and the boundary
conditions aJona the outer straight line boundary are satisfied directly by means of the Fourier
expansion method. Numerical calcuJations are carried out for the plates with various edge
conditions. To verify the present analysis, the results on the problem treated by the previous
authors are also obtained as a special case of this problem.

2. ANALYSIS

A recta...... plate having an eccentric circular inner boundary is shown in Fig. 1, in which
Cartesian coordinates .t, , and polar coordinates r, Bare taken as in the fipre. The equation of
motion for a plate, in the polar coordinates r, B is

(1)

where IV is the transverse displacement, V2 is the two-dimensional Laplacian operator, p is the
mus deaaity, " is the dtictness, D- Blts/l2(I-.,t) is the flextnl riPfity, B is YOUItI's
modulus, " is PoiuoB'. ratio and t is the time. The dispIac:eawDt IV is deaofecl by IV ==
W(r, ,) lin fill for free vibrations. Hence we have

W == ~ I ..[A"".(ar) +B",Y.(ar) +C",I.(ar)+D",K.(ar]4»", (2)f-1.-o
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rig. 1. Geometry of a rectangular plate with an eccentric circular inside edge.

E" =1/2 for n =0, and E" =1 for n ~ 1

4>." = cos nO, 4>211 = sin nO, u· = phfl)2/D
(3)

(II is the circular frequency, Ajra, Bill' C;.. and D;.. are constants of integration to be determined
from the boundary conditions, J,,(ar) and Y,,(ar) are Bessel functions of first and second kinds
of order n and I.(ar) and K.(ar) are modified Bessel functions. The boundary conditions along
the inner edge are

(W)'_d = (aw/ar)'=d = 0
(M,),.... = (V,),_.. = 0
(w),_ .. =(M,),_ .. =0

for the clamped dege
for the free edge
for the simply supported edge

(4)

where M, is the bending moment and V, is the Kirchoff shear in the plate. Substituting eqn (2)
into eqns (4) and eliminating the constants Cjll and Djll, we have

The coefficients 1." - 1." are given in the Appendix for various inner boundary conditions.
The boundary conditions along the outer edge are

(5)

(wlr =(aw/azlr =0

(wlr=(Mz)r=O

(Vzlr =(Mzlr =0

for the clamped edge

for the simply supported edge

for the free edge

(6)

where (w)r is the displacement at the boundary rand z is the coordinate normal to the
boundary. Since the displacement is expressed in terms of the coordinates r and 8, it is
convenient to treat the outer boundary conditions when the derivatives in the equations of the
bending slope, bending moment and shearing force which are expressed as functions of x and y
are transformed in terms of the coordinates rand 6. If we consider two important cases of
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clamped and simply supported edges, the transformed expressions are

tOOl)

iW/ax = (aW/cJr) COS '-(cJW/a')(l/r) sin 8

aW/cJy =(aW/ir) sin 8+(aW/a,)(l/r) cos 8

Mx =- D(cJ2 W/ix2+ lIcJ2 W/ay2)

=- D[(i2W/ir)(cor8+ I' sm28)- 2{(i2W/a8ir)(1- p)/r} sin 8 cos 8

+(iW/ir)(sin28 + pcos28)/r+2{(aW/a8)(1- p)/r} sin 8cos 8

+(i2W/i8~sin2 8+ II cos2 8)/r]

M, =- D(i 2W/ i y2+ lIcJ2 W/ix2)

=- D[(i2W/ir)(II cos28 + sin28)+2{(cJ2W/i8ir)(1- II)/r}sin 8cos,

+ (iW/ir)(II sin28+cos28)/r- 2{(ilW/il8)(1- p)/r}sin 8 cos 8

+ (a2W/i82
)(II sin28+cos28)/r]. (7)

Equations (7) are the exact transformed expressions of bendina slopes and bendina moments in
the x and y directions. Substituting eqn (5) into eqns (7) yields

iW/ay = a ~ I E.[A~ift(r, 8) +B/tI4.(r, 8)]f.1.-0
Mx =- Da2±I E,,[Ap,Gp,(r, 8) +B/tIH/It(r, 8)]

/-1,,-0

(8)

where

XI.(r, 8) =J:A,ar) cos 8cos n8 + (n/ar)J.(ar) sin 8 sin n8 + [1:A,ar) cos 8cos n8

+ (n/ar)l.(ar) sin hin n8h3" + [K~(ar)cos 8 cos n8 + (n/ar)K.(ar) sin 8

x sin n8hl"

LI.(r, 8) =Y:A,ar) cos 8cos n8 + (n/ar) Y.(ar) sin 8 sin n8 + [1:J.ar) cos 8cos n8
+ (n/ar)l,,(ar) sin 8 sin n8h.... + [K:J.ar) cos 8cos n8+(n/ar)K.(ar)

x sin 8 sin n8]1h

.fl,,(r, 8) =J:A,ar) sin 8cos n8 -(n/ar)J.(ar) cos 8 sin n8 + [l:J.ar) sin 8cos n8

- (n/ar)l.(ar) cos 8 sin n8h3" + [K:A,ar) sin 8 cos n8 - (n/ar)/{,,(ar)

xcos 8 sin "'hI.
l .•(r, 8) =Y:A,ar) sin 8cos n8 - (n/ar) Y.(ar) cos 8 sin n8 + [1:A,ar) sin 1 cos n8

-(n/ar)l.(ar) cos 8 sin n8h.... + [K:J.ar) sin 8cos nl -(n/ar)K.(ar) cos, sin III]1h

G••(r, 8) = gl" + 'Y3.63" + 11", , HI.(r, 8) = g2ll + """'3" + 'Y2lII....

G\,,(r, 8) = gl" + 13";3" + 11,,; , H.,,(r, 8) = g2ft + 14113" + 12"'4" (9)
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I~(ar) = I._I(ar) - (n/ar)JII(ar), Y:,(ar) = YII_1(ar) - (n/ar) YII(ar)

I~(ar) =I,,_,(ar) - (n/ar)III(ar), K:,(ar) =- [KII_,(ar) +(n/ar)KII(ar)}

gl" =[(n Z+ n)(l- "Xcos 28 cos n8- sin 28 sin n8)/a2r -(cos2 9+ "sin2 9) cos n9}JII(ar)

- {(I- "Xcos 29 cos n8 - n sin 28 sin n9)/ar}JII_,(ar)

g2" =[(n2 + nXl- "Xeos 28 cos n8 - sin 28 sin n9)/a2r - (cos2 8+ J1 sin2 9) cos n9] YII(ar)

- [(1- ,,)(cos 28 cos nO - n sin 28 sin n9)/ar) YII-1(ar)

g3" =[(n2+ n)(l - "Xcos 28 cos n8 - sin 28 sin n8)/a2r +(cos2 8+ "sin2 8) cos n9]lIl(ar)

- [(1- ,,)(cos 28 cos nO - n sin 29 sin n8)/ar]III_I(ar)

g.." =[(n 2 + n)(l- ,,)(cos 28 cos n8-sin 28 sin n8)/a2r+(cos2 8+" sin2 8) cos n8]KII(ar)

+[(I - ,,)(cos 28 cos n8 - n sin 28 sin n9)/ar]K._1{ar)

gl. =[-(nl + n)(l- "Xcos 28 cos n8 - sin 28 sin n8)/alr-("cosl 8+sin28) cos nO}J.(ar)

+[(1- ,,)(cos 28 cos n8 - n sin 28 sin n8)/ar}J._,(ar)

gl" =[- (nl + n)(l- "Xcos 28 cos nO-sin 28 sin n8)/al r-(" cosl 8+ sin2 0) cos n8}Y,,(ar)

+ [(1- ,,)(cos 20 cos n8 - n sin 29 sin n8)/ar] Y._I(ar)

g3. =[-(n 2+ n)(l- ,,)(cos 20 cos n8 -sin28 sin n8)/a2r+(" cos2 8+ sin2 8) cos n8]I.(ar)

+[(1- ,,)(cos 28 cos n8 - n sin 28 sin n8)/ar]I,,_I{ar)

g.." =[- (n2+ n)(l- ,,)(cos 28 cos n8 - sin 28 sin n8)/a2r+{"cos2 8+sin2 8) cos n8]K.(ar)

- [(1- ,,)(cos 28 cos n8 - n sin 28 sin n8)/ar]K,,_I(ar). (l0)

The expressions for j =2have the same forms as eqns (10), but cos n8 is replaced by sin n8 and
also sin n8 is replaced by - cos n8.

The boundary conditions along the whole range of the outer edge cannot be satisfied directly
because the expressions for the conditions are not expressed as trigonometric series of the
coordinate 8. To satisfy the outer boundary conditions, the Fourier expansion is performed to
the expressions along the boundary lines. In the present case, since the boundary is consisted of
four straight lines and has comers, the boundary is separated between the comers. Fourier
coefficients are therefore obtained by the addition of these for the separated boundaries. When
the plate is symmetric about the x-axis, the motion of it is separated into two types of
symmetric and antisymmetric vibrations. In this case, if we take 8 as an independent variable,
the boundary conditions are expressed in the following Fourier series:

I I €.€m(S:t.,AjIt +SZ.!mBjII)"'jm =0
1ft •

for j= 1,2 (ll)

where ""Ift = cos m8. ""-Ill = sin m8. €III = 1/2 for m= 0 and €... =1 for m~ 1. By using the
symmetry, S~~ - S:{.. are obtained as

for k =1.2. 3, 4 (12)
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where 80"" 0,~ "" 1J' and

Z~(I) =[J.(crR,) + 'Y3J.(aR.) + 'Y,.K.(aR,»)CI,.

Z~') "" (Y.(aR,) + 'YJ.(aRi ) +.,..&'.(d,)]4>,.

Z~'(I):= X,.(R.. I), ~(I)=X,.(Rz, I), Z:(f) =X,.(R3, 8)

Z~4(I) =L,.(R.. I), .z:<f) "" i.,.{R" f), ~I):= L,.(R3, 8)

1011

(13)

(14)

for the clamped edge, and

Z~(f) = G,.(R" I). ~(I)=",.(R" I). Z:(8) =G,.(R3, I)

Z~4(f)=H,.(R.. 8), Z':(') =ii,.(R" f), Z:<8) =H,.(R3, 8)

for the simply supported edae. Z~(8) and Z2(f) have the same forms as those shown in eqns
(13) in the case of simply supported edaes. R; is the coordinate, at Ith boundary which is
expressed as a function of f.

The fJequency eqaIion is Obtained from eqns (11) for the symmetric mode with respect to
thi.r-axis by takina i-I. When the terms II and m are truncated to N +1. we have

sM sIA-----s~o
Sll'"1°' '"
I "
L. "s&k------- S~H

sM sfA-----sJJo
S31",

01 "
I "
I "

S&k------~sJJH

Sit stA-----fJo
~l '" I
1 " 1
1 " 'J. ,Isik--------s~

=0
stoA S1&-----S4Jo
rMI" 1
~Ol" 1
I " I
1 ',I
1'1 ',1'1.)OH-------- S HH •

(IS)

The frequency equation for the antisymmetric mode with respect to the .I-axis can be obtained
by taking j =2. n, m "" 1,2,3, .. .N.

3. NUMERICAL RESULTS

We have the following relations (see rIB. 1)

80 =O. 8 1=tan-'(bz/h,), 8z =1J' - tan-I(bz/h3), 83 =1J'
(16)

RI=hI/COS 8, Rz=h,/sin 8, R3=- hJicos 8. hi "" t + e/2, h2= d/2, h)= e/2 - t.

Substituting eqns (16) into eqns (13) and (14), Z: is expressed as a function of f only. Then the
intearation in eqn (12) can be performed numerically. In this analysis the outer boundary
conditions are satisfied by usiDJ an infinite number of Fourier series and hence the results
obtained must be investipted with respect to both the converpmce of the series and the errors
of numerical calculation. Table 1 depicts the fundamental Dondimensional natunl frequency
A(= J¥<P/tID» of a square plate with a central hole vs N. Since the conveqence of the
series is aood, the results with sufticient accuracy can be obtained when up to seven terms are
included in the numerical calculation. When the value of ale reduces to zero, the solution
becomes to that for the .... with a point hole and hence the fundamental frequency should be
a little lower than in the case of the solid plates. However the diecrepancy between the result
for tile =0 and that of the solid plate is sipftIcutIy ....1. To verify the present anaI)'siI, the
result for small values of ale is compared with that of a solid plate and in the case of the
clamped plate, the result A"" 3S.984 is obtained for 11/c - U2S, while that for the solid plate is
A"" 35.99(13J. The present result in such a special case shows aood qreement with Youna's result.
Fipres 2 and 3 show die comparisoa between author's and other authors' resultsl3.4J for
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Table l. Fundamental natural frequencies A(=wtA/(pII/D» of a square plate with a centroI bole vs N for
,,=0.3

Cluoped platell Simply supported

aid aid

N 0.1 0.2 0.3 0.1 0.2 0.3

3 34.96 35.53 38.21

4 36.12 36.76 39.67

5 35.81 36.48 39.36 19.53 19.29 19.50

6 35.83 36.51 39.39 19.53 19.29 19.50

7 35.83 36.51 39.39 19.52 19.29 19.50

fundamental frequencies in the case of a square plate with acentral hole. Since Takahashi, in using
the Rayleiab-Ritz method, employed as his comparison functions a set of functions diYided from
beam deIection fuae:tions (i.e. Poisson's ratio 1I = 0), the shape of the curvessiveD by the author
and Hegarty and Ariman is different from that by Takahashi. Detailed diacussioas about it were
Jiven by Ikprty and Ariman[4] usina the point matehina method. It canbe noted that the present
results are in aood apeemeIlt with those by Beprty and Ariman, and dilcrepuciesbetween bOth
analyses are limited within 2.5%. It seems therefore the present analysis Jives reliable resultsfor
VlDration problems of a plate with a circular inner boundary.

Tables 2and 3 show the fundamental natural frequencies A(= Jy(ph/D» of the plate with
a square outer boundary of lenath c =d and an eccentric circular inner boundary of eccen­
tricity e for various combinations of the outer and the inner boundary conditions. The
abbreviation C denotes the clamped edge, S the simply supported edge and F the free edge.
Tables 4 and S show the frequencies A(= Jy(plr/D» of a rectansular plate with an eccentric
circular inner boundary. The effects of the eccentricity on the natural frequencies are small in
the case of the plate with a hole, while when the inner edge is a clamped or a supported
boundary, the frequency varies significantly, and those etfects cannot be neglected. Figures 4
and S show the frequencies for first and second modes vs the eccentricity elc in the case of a
clamped square plate with a hole and the plate with a clamped circular inner boundary. It can

-<
37.5

37.0

36.5

35.5

35.0

34.5 - AJTHOR
----- HEGARTY Atel AAlMAN
--- TAllAHASHl

J
3~0 ~ ~ ~ ~ n~ ~

20/C
FII- 2. CompanSOll between author', and adler alIlhon' results for fUDdamtntal natural frequencies Aof a

clamped square plate with a central hole.
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18.4
AUTHOR

I£GARTV AND ARtMAN

1a.o0 Q.05 0.10 0.15 ().2() Q.25 030 Q.35 ().4()
2a/C

F'... 3. Comparison between author's and other authors' results for fundameatal aaturaI frequencies Afor a
simply supported square plate with a central hole.

Table 2. Fundameatal natural frequeacies A of a clamped square plate with an ecc:entric c:ircuIar inside
edlefor ... 0.1

e/e

24/c 0 0.05 0.10 0.15 0.20 0.25 0.30

c~
0.1 90.63 81.81 72.11 64.02 57.42 52.08 47.77

0.2 109.8 97.41 84.62 73.86 65.17 58.20 52.61

0.3 133.3 117.0 100.6 86.42 74.95 65.83 58.54

c~
0.1 77.06 71.20 63.64 57.23 51.98 47.73 u.n
0.2 87.77 79.83 70.30 62.33 55.92 50.77 46.67

0.3 105.2 93.42 80.73 70.30 61.98 55.42 50.20

c~
0.1 35.83 35.85 35.88 35.93 35.93 35.88 35.77

0.2 3.6.51 36.51 36.46 36.38 36.24 36.01 35.79

0.3 39.39 n.14 38.49 37.63 36.73 35.91 35.62
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Fig. 4. Frequencies Avs eccentricities for a clamped square plate having an eccentric circular hole with
1'=0.3.
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rig. S. Frequencies A vs eccentricities for a clamped square plate having an eccentric circular clamped
inside edge.
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Tlllle1lWt .........~ 1 or,...., ................... tllllI8b'ic circ*
ilIiIe"".".U

etc

24/c 0 0.05 0.10 0.15 0.20 0.25 0.30

s~
0.1 60.012 5••13 ..... 43.11 3•• 61 3•• 92 31.16

0.2 73.27 65.39 51.98 ".19 ".11 39.39 35.53

0.3 ...,. 71.'0 61." 5.... 50.'2 ".13 39.95

s~
0.1 50.75 47.17 42.33 3'.0' 3.... 31 ••5 U.9S

0.2 56.7.8 52.17 .6.23 U.U 36.n 33.42 30.55

0.3 67.53 60.6. 52.73 46.14 .0.13 36.52 32.98

s~
0.1 19.52 19.53 19.55 19.56 19.60 19.62 19.63

0.2 19.29 19.29 19.32 19.35 19.40 19... n.n
0.3 19.50 19.49 19.47 19.4% 19.38 19.32 19.25

Tallie 4. FuodI..... nahnl frequeacies Aof , clamped rectancuIIr plate with aD eee-Iric: circular bole
for ".0.3

./c

c/d 2a/c 0 0.05 0.10 0.15 0.20 0.25 0.30

0.1 26." 27.05 27.12 27.26 27.27 26.98 26 ••2

1.5 0.2 28.30 28.30 28.30 28.23 27.95 27.26 26.56

c[OcF J1
0.3 32.05 31.77 30.17 29.96 28.92 27.74 26.84

0.1 2•• 58 2•• 72 24.87 25.13 25.50 25.81 24.62

2.0 0.25 21.31 28.28 28.03 27.75 27.45 26.90 25.18

0.3 30.48 29.55 21.11 28.31 27.93 27.43 25.88

Tillie S. Fundamencal uaturaI frequencies Aof • daalped rectaI'fIUIar plate with aa eccentric clamped
circular iuide odie

etc

C/d 2a/c 0 0.05 0.10 0.15 0.20 0.25 0.30

c~
0.1 38.78 34.38 32.03 30.65 30.25 30.65 29.35

2.0 0.2 n.85 37.15 33.75 31.73 31.20 31.43 29.60

0.3 50.60 42.21 37.05 33... 32.73 32.10 31.30

be observed that the frequency for the tint mode decreases with the eccentricity. while that for
the second mode increases. From these discussions. it is concluded that the elects of the
eccentricity on the .freqaenciesiacrease as the rfaidity of the inner ectae increases. and in
........ those efects CI8IlOt be netIected. The I'IIUIts liven in the tables and fipres denote the
fnIquencies of symllllUic IDDdes with mpeet to tile x-axis. The frequencies of aatisymmetric
modes can also be obtained in the same way•

... CONCLUSIONS
In this paper a method for solving vibration problems of a plate havial a recta....... outside

and an ecceatric circular iaside edae has been praeated. The fnqueacy equation of the plate
has been obtaiaed and IIUJDIIicaI calculations have been CIIried out for __CCMBtIiIIIIio8s of
outer and inner boundary conditions. It is concluded that tile elects of tile eccentricity of the
inner edae on the .... frequeacies iDcreue as the riaiditY of die inner boundary becomes
Iaqe and in aenenJ. these efects cannot be neaIected. The conveqence of the series was aood
and the results with su8lcient accuracy were obtained easily .... a minicomputer. ~ore
this method has some advantases compared with the other aenenJ approximate methods.
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APPENDIX
The coefficients 'Y'. - 'Y.. in eqn (5) are given by

'YI. = UI.i2• - i2.il.)/F, 'Y2. = (YI.i2• - Y2.i,.)/F

'Y3. = -UI.k2• - i2.k,.)/F, 'Y4. = -(y,.k2• - Y2.k,.)fF

where

il. =I.(ar), h. =J._I(cra)- (n/aa)J.(aa). YI. =Y.(aa)

Y2. =Y._I(aa)-(n/aa)Y.(aa). i ,• =I.(aa), i2• =1._I(aa)-(n/aa)I.(lla)

kl. = K.(lla), k2• '" - K._I(aa)-(n/lla)K.(lla)

for the clamped edge, and

il. = mI. '" [n(n +1)(1- /I)/a 2a2 - IlJ.(lla) - [(1- /I)/aa]J._,(aa)

YI. '" m2. = [n(n +1)(1- /I)/a2a2-I]Y.(aa)- [(1- /I)/aa] Y._I(aa)

i,. '" m3. = (n(n +1)(1- /I)/a2a2+ l]l.(aa)- [(1- /I)/aa]I._I(aa)

kl. =m4. =[n(n +1)(1- /I)/a2a2+ I]K.(aa) +((1- /I)/aa)K._,(aa)

i2n '" [n2(n +1)(1- /I)/a 3a3+n/aalJ.(aal- (n2(1- /ll/a 2a2+ 1]J._I(aa)

Y2n = (n2(n +1)(1- /I)/a3a3+n/aaIY.(aa)- (n2(1- /I)/a2a2+IIY._1(aa)

i2n =(n2(n +1)(1- /I)/a 3a3 - n/aaII.(aa)- (n~l- /I)/a2a2 _l]l._I(aa)

k2• '" (n2(n +1)(1- /llfa3a3
- n/aaIK.(aa)+(n2(l- 1I)/a2a2-1IK._1(aa)

for the free edge and

il. = J.(aa), h. '" mI.' Yl. '" Y.(aa), Y20 = m2.

i l• '" I.(aa), i2• =m3.. kl. =K,,(aa). k20 '" m4.

for the simply supported edae.

(17)
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(19)
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