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Abstract—In this paper a method for solving vibration problems of a rectanguiar plate with an eccentric
circular inner boundary is presented. mmvdueuohhmoﬂhephtzusolvedbythewofﬂuem
solution of the equation of motion which satisfies the inner boundary conditions. The boundary conditions
“mmedumwu&dWmdﬂnFumemmwMNWMm
cavied out for various combinations of outer and inner boundary conditions, and the nondimensional
natural frequencies are given for a number of cases.

1. INTRODUCTION

A rectangular plate having an inner circular boundary is widely used in many branches of
engineering. The dynamic behavior of this type of plate therefore needs to be understood and
many investigations on the vibration of square(l, 2}, rectangular(3, 4] and irregular shaped|S5)
plates with holes have been reported. However the plate with the other edges and that with
eccentric inner edges have not been thoroughly discussed although the solution in Ref. [4)
imposes no symmetry restrictions. This paper deals with eigenvalue problems of a rectangular
plate with an eccentric circular inner edge for various combinations of outer and inner
boundary conditions. For this problem, general approximate methods such as the finite element,
finite difference and point matching methods[4] are usually applied. These methods have many
advantages for solving vibration problems of a plate with irregular boundaries. However in such
methods a large size digital computer is required and, in general, there are many computational
difficuities to obtain good results in cases of higher mode vibrations[6, 7). Therefore it seems to
be important to give a more straightforward method from which the results with reasonable
accuracy being obtained easily by using a minicomputer. Recently the author gave a straight-
forward method to deal with vibration and dynamic response problems of membranes{8-11)
and plates[11, 12] with arbitrary shape. In those studies the boundary of the plate was restricted
to one made up of curves. In this paper this method is expanded into vibration problems of the
rectangular plate with an eccentric circular inside edge. In the analysis the exact solution of
equation of motion which satisfies the inner boundary conditions is utilized and the boundary
conditions along the outer straight line boundary are satisfied directly by means of the Fourier
expansion method. Numerical calculations are carried out for the plates with various edge
conditions. To verify the present analysis, the results on the probiem treated by the previous
authors are also obtained as a special case of this problem.

2. ANALYSIS

A rectangular plate having an eccentric circular inner boundary is shown in Fig. 1, in which
Cartesian coordinates x, y and polar coordinates 7, @ are taken as in the figure. The equation of
motion for a plate, in the polar coordinates 7, 8 is

DVViw + pha*wlot* =0 1

where w is the transverse displacement, V2 is the two~-dimensional Laplacian operator, p is the
mass density, h is the thickness, D= Eh’/12(1-?) is the flexural rigidity, E is Youag’s
modulus, » is Poisson’s ratio and ¢ is the time. The displacement w is denoted by w=
W(r, 0) sin wt for free vibrations. Hence we have

W= g go e[ApJi(ar)+ B, Y, (ar) + Cul.(ar) + DK, (ar)d,, ()
1007
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Fig. 1. Geometry of a rectangular plate with an eccentric circular inside edge.

where

=12 forn=0, and ¢=1 forn=z1

3)
&, =cosnd, &, =sinnd, ao'=phe’/D

w is the circular frequency, A, Bj, C;, and D,, are constants of integration to be determined
from the boundary conditions, J,(ar) and Y,(ar) are Bessel functions of first and second kinds
of order n and I,(ar) and K, (ar) are modified Bessel functions. The boundary conditions along
the inner edge are

(W)=a=(dWlar),.,=0 for the clamped dege
M)reo=(V,);=o =0 for the free edge @
(W)ea=(M,)na=0 for the simply supported edge

where M, is the bending moment and V, is the Kirchoff shear in the plate. Substituting eqn (2)
into eqns (4) and eliminating the constants C;, and D, we have

W = i wo fn[Ain{]n(ar) + ‘y;,.l,,(ar) + ‘Yann(a’)}

j=l n=

+ B’n{ Yn(a’) + 'YA,.I,.(af) + 72nKu(ar)}]¢in- (5)

The coefficients y,, ~ 74, are given in the Appendix for various inner boundary conditions.
The boundary conditions along the outer edge are

(w)yr=(awldz)r=0  for the clamped edge
Wir=(M;)r=0 for the simply supported edge (6)
(Vo r=(M,)r=0 for the free edge

where (w)r is the displacement at the boundary I' and z is the coordinate normal to the
boundary. Since the displacement is expressed in terms of the coordinates r and 6, it is
convenient to treat the outer boundary conditions when the derivatives in the equations of the
bending slope, bending moment and shearing force which are expressed as functions of x and y
are transformed in terms of the coordinates r and 6. If we consider two important cases of
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clamped and simply supported edges, the transformed expressions are

aWlax = (aW]ar) cos § — (aW]a8)X1/r) sin 6
aWlay = (aW]ar) sin 8 +(aW]adX1/r) cos 6
M, = — D(3*W]ax* + va*W]ay?)
= — D[(3*W]ar*)cos28 + v sin? 8) — 2{(3* W] 30arX1 - »)/r} sin 6 cos 8
+(aW]ar)sin? 6 + v cos® 0)/r + 2{(aW]36)X1 — v)/r*} sin 0 cos @
+(8*W136Xsin® 8 + v cos? 8)/ )
M, = — D(3*W]ay* + va*W]ax?)
= — D[(a*W]ar*)v cos? 8 + sin’ 8) + 2{(3* W] 36arX1 — v)/r}sin 6 cos 8
+(aWlarXv sin® 8+ cos® 8)/r— 2{(aW/30X1 — v)/r¥}sin 8 cos @
+(3*W]30*) v sin® 0 + cos? 8)/ ). V)

Equations (7) are the exact transformed expressions of bending slopes and bending moments in
the x and y directions. Substituting eqn (5) into eqns (7) yields

aWlox=a ,2 f:o €LAnXa(r, 0)+ BoLo(r, 6)]

Wy =a ; 3 Q4R 0+ Bt 0

= Daziﬁ "o €[ AnGalr, 6) + BoH,(r, 0))

M, = - Do’ i)’; S lA4uGar, 6+ BuHlu(r,0) ®

where

Xia(r, 8) = Ji{ar) cos 8 cos nd + (nfar)] (ar) sin 8 sin nd + [I(ar) cos 8 cos nd
+(njar)],(ar) sin 0 sin n8]y,, + [K(ar)cos 6 cos n0 + (nfar)K,(ar) sin 6
X sin n8)y,,

Li.(r, 8) = Y (ar)cos 6 cos n8 + (n/ar)Y,(ar) sin 9 sin n0 + [I:(ar) cos 8 cos nd
+(n/ar),(ar) sin 0 sin n0)y., + [K.{(ar) cos @ cos nd + (n/ar)K,(ar)

x sin 0 sin n6]y,,
X\u(r, 8) = Ji{ar) sin 8 cos n6 — (n/ar)],(ar) cos 8 sin n8 + [I'(ar) sin @ cos né
—(nlar)l,(ar) cos @ sin n8ly,, + [K.(ar) sin 8 cos né — (n/ar)K,(ar)
X cos 0 sin nf)y,,
L,.(r, ) = Y (ar) sin 8 cos n8 — (n/ar)Y,(ar) cos @ sin n + [I'(ar) sin 8 cos nd
—(n/ar)L,(ar) cos 0 sin n6)y,, +[K.(ar) sin 6 cos nf — (n/ar)K,(ar) cos 0 sin n8)ys,
Gi(r, 0) = 81n + 13830 + VinBaws  Hial7, 0) = 820 + YanB3n + Yanbta
Gin(r, 0)= F1a+ Vonisn + VinBtns  Hinlr, 0) = B1u + Vouon + Yonitn ©)
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and where

Jular)=J,_(ar) = (nlar)) (ar), YLar)= Y..,(ar)—(nlar)Y,(ar)

Iar)=I,_(ar)—{(nlar),(ar), Kiar)=—{K,.{ar)+(njar)K,(ar)]

&in ={(n*+ n)X1 - v)Xcos 26 cos nd — sin 20 sin nd)/a*r* —(cos® 8 + v sin? 8) cos nd}J,(ar)
~{(1 - vXcos 28 cos n8 — n sin 20 sin n@)/ar}J,_(ar)

820 = [(n?+ nX1 = vXcos 20 cos nd — sin 28 sin n)/a’r* — (cos® 0 + v sin® 8) cos n8]Y,(ar)
—[(1 - vXcos 26 cos nd — n sin 20 sin n8)/arlY,_(ar)

&in = [(n*+ n)(1 - vXcos 20 cos né — sin 24 sin n8)/a*r* + (cos® 8 + v sin® 8) cos n8}l,(ar)
~[(1 = »Xcos 26 cos né - n sin 20 sin né)/ar}l,_{ar)

84n = [(n2+ n)1 — »)(cos 28 cos n8 — sin 28 sin nd)/a*r* +(cos® 8 + v sin® 8) cos n8)K,(ar)
+[(1 - v)(cos 28 cos n@ — n sin 20 sin n8)/ar]K,_,(ar)

Zin = [~ (n*+ n)(1 = v)cos 20 cos né — sin 28 sin nd)/a’r* ~ (v cos’® 8 + sin® ) cos nd}J,(ar)
+ [(1 ~ ¥Xcos 28 cos nd — n sin 20 sin n8)/ar)),_(ar)

&2 = [— (n?*+ n)(1 — v)cos 28 cos n8 ~ sin 26 sin n6)/a’r* — (v cos? 8 + sin? 8) cos n}Y,(ar)
+[(1 - v)cos 26 cos nd — n sin 26 sin n)/ar}Y,_(ar)

&in = [= (n*+ n)(1 — v)(cos 28 cos nd — sin 26 sin nd)/a*r* + (v cos® 8 + sin’ §) cos nd}l,(ar)
+[(1~ vXcos 26 cos n@ — n sin 20 sin n)/ar}l,_(ar)

Zun = [ (n*+ n)(1 — v)Xcos 28 cos n8 - sin 20 sin nd)/ar* + (v cos? 8 + sin’ 6) cos nd}K,(ar)
—{(1 - vXcos 28 cos n@ — n sin 28 sin n8)/ar}K,_(ar). (10)

The expressions for j = 2 have the same forms as eqns (10), but cos né is replaced by sin n@ and
also sin n8 is replaced by —cos nd.

The boundary conditions along the whole range of the outer edge cannot be satisfied directly
because the expressions for the conditions are not expressed as trigonometric series of the
coordinate 8. To satisfy the outer boundary conditions, the Fourier expansion is performed to
the expressions along the boundary lines. In the present case, since the boundary is consisted of
four straight lines and has corners, the boundary is separated between the corners. Fourier
coefficients are therefore obtained by the addition of these for the separated boundaries. When
the plate is symmetric about the x-axis, the motion of it is separated into two types of
symmetric and antisymmetric vibrations. In this case, if we take # as an independent variable,
the boundary conditions are expressed in the following Fourier series:

2 2 fnem(sﬁnAjn + Si';ng,',.)lﬁ;m = 0
forj=1,2 (an
2 2 eutn(StnAp + St Bl =0

where 1, =cos mé, ¢, =sinmé, €, =1/2 for m=0 and ¢, =1 for m21. By using the
symmetry, S¥, ~S¥, are obtained as

(e
Sth=@im Y, L ZEOmdd  for k=1,2,3,4 )
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where 8,=0, 8;= 7 and

Z{(0) = [Ju(aR) + 1aala(aR) + V1aKa(aR) P
Z2(0) = Ya(aR) + Yeuo(aR) + 1auKo(aR)IDse
Z(0) = Xu(R1, 8), ZR(0)= Xp(Ry, 0), ZR(6)=Xp(R;, 0)
Z¥6) = Lo(R,, 0), Z¥(0)=L.(R;,0), Z}0)= Lin(Ry,6)

for the clamped edge, and

13

Z2(0)=Gp(Ry,0), ZE(8)=Gu(Ry,0), Z3(6)=Gu(R;, 6)

- (14
Z}:(G) = H).(Rh 0), Z,’:(G) = Hh(RZv 9), Zi.‘(ﬂ) = H;.(R;, 6)
for the simply supported edge. Z}:(9) and Z{3(8) have the same forms as those shown in eqns
(13) in the case of simply supported edges. R; is the coordinate 7 at ith boundary which is
expressed as a function of 8.
mmmﬁmﬁomeqns(ll)forﬂnsymmemmmmm
thex-msbyhhnglal When the terms a and m are truncated to N + 1, we have

S S 107 S S” S ---- S;z \}n
Sl!‘ “~ S%l “~ =
l ""\ \\\ i
Slhymes Sk Stk S
=0 (15)
s3l SJI__.__ s‘l S1 _____ wlo
S}l \ \\ m \‘w\ i
l \‘&\ l \"\\\ =
= Sl Sth=-mmm—- Stnl -

The frequency equation for the antisymmetric mode with respect to the x-axis can be obtained
by taking j=2,n,m=123,...N.

3. NUMERICAL RESULTS
We have the following relations (see Fig. 1)

68,=0, 8,=tan"(by/b)), 6,=m—tan"'(by/b;), O;=1=

16
=b,Jcos 8, Ry=byfsin8, Ry=-byjcos8, b=e+cl2, b,=d2, by=cl2-e a6)
Snbstxtutmg eqns (16) into eqns (13) and (14), Z§ is expressed as a function of 8 only. Then the
integration in eqn (12) can be performed numencally In this analysis the outer boundary
conditions are satisfied by using an infinite number of Fourier series and hence the results
obtained must be investigated with respect to both the convergence of the series and the errors
of numerical calculation. Table 1 depicts the fundamental nondimensional natural frequency
A(= wd®\/(phiD)) of a square plate with a central hole vs N. Since the convergence of the
series is good, the results with sufficient accuracy can be obtained when up to seven terms are
included in the numerical calculation. When the value of a/c reduces to zero, the solution
becomes to that for the plate with a point hole and hence the fundamental frequency should be
a littie lower than in the case of the solid plates. However the discrepancy between the resuit
for a/c =0 and that of the solid plate is significantly small. To verify the present analysis, the
result for small values of a/c is compared with that of a solid plate and in the case of the
clamped plate, the result A = 35.984 is obtained for a/c = 0.025, while that for the solid plate is
A = 35.99{13]. The present result in such a special case shows good agreement with Young's resuit.
Figures 2 and 3 show thie comparison between author's and other authors’ results[3, 4] for
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Table . Fundamental natural frequencies A(= wd’\/(ph/ D)) of a square plate with a centrol hole vs N for

v=03
Clamped plates Simply supported
a/d a/d
N 0.1 0.2 0.3 0.1 0.2 0.3

34.96  35.53 38.21
36.12 36.76  139.67
35.81 36.48 39.36 19.53 19.29 19.50
35.83 36.51 39.39 19.53 19.29 1%.50
35.83 36.51 39.3)9 19.52 19.29 19.50

- W e W

fundamental frequencies in the case of a square plate with a central hole. Since Takahashi, in using
the Rayleigh-Ritz method, employed as his comparison functions a set of functions divided from
beam deflection functions (i.c. Poisson’s ratio v = 0), the shape of the curves given by the author
and Hegarty and Ariman is different from that by Takahashi. Detailed discussions about it were
given by Hegarty and Ariman(4] using the point matching method. It can be noted that the present
results are in good agreement with those by Hegarty and Ariman, and discrepancies between both
analyses are limited within 2.5%. It seems therefore the present analysis gives reliable results for
vibration probiems of a plate with a circular inner boundary.

Tables 2 and 3 show the fundamental natural frequencies A(= wd?\/(ph/D)) of the plate with
a square outer boundary of length ¢ =d and an eccentric circular inner boundary of eccen-
tricity e for various combinations of the outer and the inner boundary conditions. The
abbreviation C denotes the clamped edge, S the simply supported edge and F the free edge.
Tables 4 and 5 show the frequencies A(= ed?\/(ph/ D)) of a rectangular plate with an eccentric
circular inner boundary. The effects of the eccentricity on the natural frequencies are small in
the case of the plate with a hole, while when the inner edge is a clamped or a supported
boundary, the frequency varies significantly, and those effects cannot be neglected. Figures 4
and 5 show the frequencies for first and second modes vs the eccentricity e/c in the case of a
clamped square plate with a hole and the plate with a clamped circular inner boundary. It can
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Fig. 2. Comparison between author's and other authors’ results for fundamental natural frequencies A of a
clamped square piate with a central hole.
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Fig. 3. Comparison between author’s and other authors’ results for fundamental natural frequencies A for a
simply supported square plate with a central hole.

Table 2. Fundamental natural frequencies A of a clamped square plate with an eccentric circular inside

edge for y=0.3
e/c
2a/c 0 0.05 0.10 0.15 0.20 0.25 0.30
0.1 90.63  81.81  72.11  64.02  S7.42  52.08  47.77
o OC 0.2 109.8 97.41  84.62  73.86  65.17 58.20  52.61
0.3 133.3  117.0  100.6 86.42  74.95  65.83  58.54
0.1 77.06  71.20  63.64  57.23 51,98  47.73  44.39
Cc OS 0.2 87.77  79.83  70.30  62.33  $5.92  50.77  46.67
0.3 105.2 93.42  80.73  70.30  61.98  55.42  50.20
0.1 35.83  35.85  35.88  35.93  35.93  35.88  35.77
C OF 0.2 36,51  36.51  36.46  36.38  36.24  36.01  35.79
0.3 39.39  39.14  38.49  37.63  36.73  35.91  35.62
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Fig. 5. Frequencies A vs eccentricities for a clamped square plate having an eccentric circular clamped
inside edge.
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Table 3. Pundamental natural frequencies A of a simply supported square plate with an eccentric circular

inside odges for » = 0.3
e/c
2a/c ° 0.05  0.10  0.15  0.20  0.25  0.30
0.1 60.42  54.83  4s.48  43.11 3861 34.92  31.86
S OC 0.2 7327 65.39  S6.98  45.89 4411 3933 35.53
0.3 $5.64  78.80  67.73  58.48  50.92  44.83 9.8
0.1 50.75  47.17  42.33  38.08  34.48  31.45  28.95
S OS 0.2 56.78  52.17  46.23  4l.14  35.92  33.42  30.55
0.3 67.53  60.64  52.73  46.14  40.83  36.52  32.98
0.1 19.52  19.53  19.55  19.56  19.60  19.62  19.63
S OF 0.2 19.29  19.29  19.32  19.35  19.40  19.4¢  19.4S
0.3 19.50  19.49  19.47  19.42 19,38  19.32  19.25

Table 4. Fundamental natural frequencies i of a clamped rectancular plate with an eccentric circular hole

for y=03
e/c
e/d4  2a/c ] 0.05 0.10 0.15 0.20 0.25 0.30
0.1 26.98 27.05 27.12 27.26 21.27 26.98 26.42
1.5 6.2 28.30 26.30 28,30 28.23 27.95 27.26 26.56
' 0.3 32.05 3.n 30.87 29.96 28.92 27.74 26.84
c OF o
l 0.1 24.58 24.72 24.87 25.13 25.50 25.88 24.62
SR  J— 2.0 0.25 28.38 28.28 28.03 27.75 27.45 26.90 25.18

0.3 30.48 29.55 28.88 28.38 27.93 27.43 25.88

Table 5. Fundamental natural frequencies A of a clamped rectangular plate with an eccentric clamped
ircular inside edge
e/c
¢/4  2a/c ° 0.0 0.10 0.15  0.20 ©0.25  0.30

0.1 38.78 34.38 32.03 30.65 30.25 30.65 29.3%
c OC 2.0 0.2 42.85 37.15 33.75 31.73 31.20 31.43 29.60
0.3 50.60 42.2%8 37.05 33.98 32.73 32.10 31.30

be observed that the frequency for the first mode decreases with the eccentricity, while that for
the second mode increases. From these discussions, it is concluded that the effects of the
eccentricity on the frequencies increase as the rigidity of the inner edge increases, and in
general, those effects cannot be neglected. The resuits given in the tables and figures denote the
frequencies of symmetric modes with respect to the x-axis. The frequencies of antisymmetric
modes can also be obtained in the same way.

4. CONCLUSIONS

In this paper a method for solving vibration problems of a plate having a rectangular outside
and an eccentric circular inside edge has been presented. The frequency equation of the plate
has been obtained and numerical calculations have been carried out for various combinations of
outer and inner boundary conditions. It is concluded that the effects of the eccentricity of the
inner edge on the natural frequencies increase as the rigidity of the inner boundary becomes
large and in general, these effects cannot be neglected. The convergence of the series was good
and the resuits with sufficient accuracy were obtained easily using a minicomputer. Therefore
this method has some advantages compared with the other general approximate methods.
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APPENDIX
The coefficients y,, ~ v.. in eqn (5) are given by
Yin = (jlniZn —j2niln),F‘ Y = (ylniln - yZniln),F
Yn = _Ulnkll —jlnkln)va Yan == (ylnkbl - yanln)/F
F= illan - kluiZn (n

where

iln = .’,,(df), hn = "n-l(aa)- (n’aa”n(aa)y Yin= Y,.(aa)

Yin = Yo-i(aa)~(nlaa)Y (aa), i\, =I(aq), i, =1, (aa)-(nlaa)],(aa)

kin = Ko(aa), ki, = K, (aa)-(naa)K,(aq) (18)
for the clamped edge, and

fin = My = [n(n +1X1 - wla’a? - 1Y (aa) - [(1 - v)/aa)),_ (aa)

Yin = My = [a(n + (1 - v)la’a® - 11Y,(aa) - [(1 - »)/aa] Y, (aq)

iyp = my, =[n(n +1X1 ~ p)la?a® + 1]],(ag) - {(1 - v)aa}],. (aa)

kin = man =[a(n + 1X1 - v)la?a® + 1}K (aa) + (1 - v)/aalK,_ (aq)

jan = [A¥n + 11 - v)la’a® + nlaa)) (aa) ~ (n¥(1 - v)|a*a® + 1)), (ca)

Yau = [#¥n + 1)1 = v)la’a® + nlaal Y, (ea) - [n¥(1 - v)la*a* +1]Y,_(aq)

e = [n¥%n + 1X1 - v)la*a® ~ nlaall (aa) - [n*(1 - v)/a?a® - 1}],_\(aa)

ky, = [n¥(n + 1X1 - v)a*a® - nlaa)K (aa) + [n¥(1 - v)ia’a®~ 1)K, _\(aa) (19)
for the free edge and

Jin = Ja(aa), jh =M Yia = Yalaa), Yo =m,

iln = I,(Gﬂ). iZn = My, klu = K.(ﬂﬂ). kb =My, (20)

for the simply supported edge.



